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Executive Summary

The objective of this project is to develop a real time fault monitoring and
diagnosis knowledge-based system (KBS) for space power systems which can save
costly operational manpower and can achieve more reliable space power system op-
eration. The proposed KBS has been developed using the AMPS (Autonomously
Managed Power System) test facility currently installed at NASA Marshall Space
Flight Center (MSFC), but the basic approach taken for this project could be appli-
cable for other space power systems. The proposed KBS is entitled “AMPERES”
(Autonomously Managed Power-System Extendible Real-time Expert System).

This project is being carried out in two phases. Phase I was completed as
of September 30, 1989, and currently Phase II is being performed. In Phase I
emphasis was put on the design of the overall KBS, the identification of the basic
research required, the initial performance of the research, and the development of
a prototype KBS. In Phase II, emphasis is put on the completion of the research
initiated in Phase I, and the enhancement of the prototype KBS developed in Phase
I. This enhancement is intended to achieve a working real time KBS incorporated
with the NASA space power system test facilities. Three major research areas
have been identified and progress has been made in each area. These areas are:
(1) real time data acquisition and its supporting data structure; (2) sensor value
validations; (3) development of inference scheme for effective fault monitoring and

diagnosis, and its supporting knowledge representation scheme.

Currently, AMPERES is able to collect the real time operational data and
to assess the power system operating status. The operational data including the
fault data is generated using a data simulation program running on a separate
computer and is transferred through the Ethernet to the host computer, Sun 3861,
at the UTSI. Part of the operational data are collected from the actual ammeter
and voltmeter measurements and the position sensor values installed in the fault
injection and load simulation device (FILSD). A resistive load can be connected
to the FILSD and can replace any one of the code generated loads by the data
simulation program to create the operational environment close to the AMPS test

facility at NASA/MSFC as possible.



Various faults and disturbances, such as overload, ground fault, battery cell
open, solar array system failure, load connect and disconnect, etc., can be generated
using the data simulation program incorporated with the FILSD. AMPERES is able
to detect those faults or disturbances and to provide report to the operators, which

includes fault kind, location, detecting sensors, severity, time, etc.



1. Introduction

1.1 Problem Statement

Electric power is a precious resource in space due to its extreme usefulness

and strictly limited availability. Not only is it crucial to the operation of the crew

members’ life-support system, but also it directly affects the overall performance of

a specific mission. For this reason, electric power must be available 24 hours a day

throughout the mission period and must be properly managed to meet the power

demand with high quality for the successful achievement of the mission objective.

The following are some of the specific problems which create difficulties in

achieving highly reliable operation of the space power systems.

1.
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1.

Expensive crew members’ manpower:

Space power systems must be continuously monitored throughout the mis-
sion period. Maintaining this manpower in space, or even on ground as an

alternative, is very expensive.

Difficulties in accumulating the power system operation experience and
expertise 1n space:

Necessity of the periodical crew members’ rotation from space duty may
make it difficult for crew members to accumulate enough experience and
expertise in space power system operation, especially for an emergency or

an abnormal operating state.

Possibility of misoperation:

If a fault occurs, normally several alarms come up simultaneously because
of the cascading effect of the fault. Also the remedial actions should be
taken within appropriate time. Numerous incoming alarms together with
time pressure for remedial action often create confusion even for the skilled
operators, which may induce misoperation and further aggravate the op-

erating state.

1.2 Objective of the Project



The objective of this project is to develop a real time fault monitoring and
diagnosis KBS for space power systems which can solve of alleviate the problems
stated above and can achieve more reliable space power system operation. The
research work necessary to solve various inherent problems associated with the real

time expert systems has also been performed in this project.
The following are the goals of the AMPERES:

i. To relieve crew members or supporting staffs on ground from the power system
monitoring tasks.

ii. To determine the cause of any fault or disturbance, provide an explanation
for the fault, determine the current status of the power system, and provide
recommendations for remedial actions within appropriate time.

iii. To perform sensor value validations to provide accurate operating state in-
formation to the fault monitoring and diagnosis KBS and the power system
operator.

iv. To carry out mid term and long term observations of the major operational
parameters to identify the failure modes and compute the life expectancy of

the major components such as battery systems, solar array systems, etc.

1.3 AMPS Test Facility

The AMPERES has been developed using AMPS test facility installed at
NASA /MSFC [Fig. 1]. Major features of the AMPS are:

(1) a programmable solar array simulator which supplies 220 + 20 Vdc di-
rectly to three power channel with a maximum power output of 75 kW; (2) an
energy storage simulator which consists of a battery with 168 commercial nickel-
cadmium (Ni-Cd) cells serially connected to provide a nominal dc voltage of 220
Volts and a capacity of 189 Ampere-hours; and (3) a load simulator which consists
of nine resistive loads and one dynamic load that consume a total of 24 kW of
power when operated at 200 Vdc. In addition, three Motorola 68000 microcom-
puter based controllers provide data retrieval and low-level decision-making for the

power system.
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Detailed structural and functional description of the AMPS test facility is well
documented in TRW final report [1]. D. Weeks discussed knowledge-based sys-
tem (KBS) approaches employed in various electrical power system breadboads at
NASA/MSFC including the AMPS test facilities [2,3]. L. Lollar described about
the KBS development for automated load management for space power systems [4]-
B. Walls developed a flexible prototype fault detection and recovery system con-
centrating on the load control center for AMPS called “Starr” using Intellicorp’s

Knowledge Engineering Environment (KEE) [5].
1.4 Past Work in Fault Monitoring and Diagnosis

A fault monitoring and diagnosis knowledge based system should be able to
collect the real time operational data continuously and to assess the current power
system operating status. If there exists any indication of a fault, it should be able
to discern the actual occurrence of the fault from various transient status or noisy
environment, and to find out the cause and the consequence of the fault within
appropriate time. This real time operational constraints poses many complex and
dynamic problems which are in the research state. These include the requirements
of continuous expert system operation, handling of asynchronous events, temporal
reasoning, nonmonotonic reasoning, response time, handling of transient state, and
filtering of sensor noises and errors, etc. Detailed discussion of these problems
and other relevant issues associated with the real time expert systems appear in
[6-10]. Survey of current efforts and existing real time expert system tools and
applications are documented in [11]. Most of the applications surveyed are in the
prototype stage. There are few commercially available expert system shells for real
time fault monitoring and control applications, such as Picon and G2 [6, 12], which
are developed for various general system applications such as industrial process

control and are not quite well suited for our specific applications.

The conventional expert system approach for fault monitoring and diagnosis
of a physical system is performed normally by looking at the snapshot picture of
the system state. Then appropriate fault patterns are generated by mapping the
present numerical sensor values into a couple of descriptive terms such as “high,”

“normal,” “low,” etc. Then finally by comparing the operational state pattern thus



generated with the fault data patterns stored in the knowledge-base, matching fault
patterns are identified. The major draw back of this approach is that it can handle
only those faults whose patterns are explicitly stored in the knowledge base. For a
physical system with reasonable complexity, enumerating all the possible fault cases
is often very difficult and time consuming. Another draw back with this pattern
matching approach is the mapping boundary problems. If a couple of sensor values
in two similar operating states were very close but happen to be landed on both
sides of the mapping boundaries of the descriptive terms, the resulting patterns
become quite different. Furthermore, with the unavoidable sensor noises and errors
in reality, the method is found to be almost impractical for realistic applications. To
compensate these drawbacks and to provide a more generic and domain independent
fault monitoring and diagnosis system, many researchers propose a causal model
based reasoning approach which concentrates more on the designed function and
behavior of each component in as physical system [13-15]. This idea seems ideal
but a component may exhibit different behavior depending on its physical and
functional environment and the combined effects of various components are often
hard to predict by simply looking at each component’s characteristics. Research
emphasis in AMPERES have been put mainly in solving above stated problems,

and the concentration areas are mentioned earlier.

1.5 Approaches Taken for the AMPERES

To perform several concurrent tasks, the main program in the AMPERES
creates several processes upon initialization [Fig. 2]. The concurrent tasks required
are the data acquisition task, user interface task and the main fault monitoring and

diagnosis task. Interprocess communication is managed through shared memory.

Sensor data is categorized as critical or non-critical data based on the possible
changing speed of the measurement values and the time resolution requirements for
diagnosis. Several data buffers are created to provide back-up buffers in case of a
fault leaving the present data and some of the pre and the post fault data intact
for diagnosis. Detailed data structures and buffer operations for data acquisition is

described in the next section.
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To generate a realistic measurement data and to inject faults safely into the
AMPS, a fault injection and load simulation device (FILSD) is designed and assem-
bled [Fig. 3]. In the load simulation mode, two resistive loads can be connected to
the FILSD using batteries as a power source. The voltage and the currents across
the loads are measured through signal conditioning circuits and the data acquisition
board to create the operational environment close to AMPS test facility as possible.
A time delayed fault can also be injected under computer control in the fault in-
jection mode. A flexible data simulation program running on a separate computer
from the host generates the power system operational data. It can replace any one

of ten simulated load data with the actual incoming data from the FILSD.

Because of the significance of having valid data before any diagnosis process, a
sensor data validation method based on the causal relations existing among sensors
are currently being developed. The method utilizes the “Functional Environments”
of sensors formulated based on the causal relations existing among sensor values.
Then the sensor validation procedure propagates through the logical chains provided

by these Functional Environments.

Each component in AMPERES, including sensors, is represented as an object.
Each component representation includes the information about the component it-
self, its functional or logical environment, and its physical environment. The physi-
cal environment includes the information about those components which are directly
connected to the current component, and the logical environment of a component
includes the information about those components which are functionally or logically
related to the current component. Starting from any sensor showing the indication
of a fault, fault diagnosis is performed by tracing down or propagating through the
sensor’s logical environment with expectation and by providing justifications of or

reasoning about each sensor value along the logical path.

The knowledge base includes the generic method descriptions for fault diag-
noses instead of enumerating all the possible specific fault cases of the faulty data
patterns. This keeps the size of the knowledge base small and coherent. Each fault
possibility is diagnosed by a specialized knowledge group associated with each fault

kind. Each knowledge group is composed of generic rules which can either assert the
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associated fault or freely invoke other knowledge groups for other fault possibilities.
After the assertion of a fault, a rule can further probe different abstraction level
presentation of the fault if necessary. Before a knowledge group is invoked, a con-
text 1s set around a sensor to pass a default sensor associated with that knowledge
group. This context switching together with the development of semantic primi-
tives enable the rule representation more natural and clear. Combined with the
“component centered” approach described in the previous paragraph, this inference
and knowledge representation scheme provides a powerful reasoning tool for fault

monitoring and diagnosis tasks.

11



2. Technical Approach
2.1 System Architecture

AMPERES is composed of five major functional models to efficiently perform
the required tasks [Fig. 4]. The fault monitoring and diagnosis task is decomposed
into several subtasks and each subtask is performed by a specialized module. In
Phase I, program codes implementing each of the functional modules has been
initiated except the Natural Language Interface, the load of Load Schedule KB,

and the Statistic KB. The functions of each module are as follows:

(1) Main Controller

The Main Controller is a task oriented inference engine which is organized and
tuned to perform the given fault monitoring and diagnosis tasks. It decides the
current task of the AMPERES by invoking appropriate modules based on inputs
from the sensors and other KBS modules. The Main Controller also includes a

submodule, the Data Acquisition Module, except the Inference Module.

The Data Acquisition Module is in charge of reading in the incoming sensor
values through the Ethernet and storing them into appropriate data buffers such
that other AMPERES’ modules can access the data.

(2) Status Monitor

The Status Monitor is in charge of assessing the current power system opera-
tional status. It is activated by the Main Controller after each sensor value scan
cycle. It is composed of 3 submodules; the Expected State Generator, the Present

State Confirmer, and the Status Evaluator.

The Expected State Generator is in charge of generating an expected normal
operating state based on the current operational context. The expected state is filled
in the appropriate attribute slots in the component representation. The expected

state is then used as a reference state by the Status Evaluator in assessing the actual

operating state.

The Present State Confirmer is in charge of formulating the actual current

12
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operating state in the knowledge base from the various sensor values. The collected
sensor data can be validated through a sensor value validation process to insure the
correctness. Sensor failures can also be found out during this validation process.
Then the sensor values are used to update the appropriate attribute slot values in

the respective sensor representations.

The Status Evaluator is in charge of assessing the current operating status. It
compares the two states obtained by the Expected State Generator and the Actual
State Confirmer. If the current operating state is turned out to be a faulty state
the Status Evaluator informs the Main Controller of it, which in turn invokes the

Fault Diagnosis Module.

(8) Fault Diagnoser

Once a fault or a disturbance is identified by the Status Monitor, the Fault
Diagnoser tries to find out the cause of the fault. It also gives recommendation for
the necessary corrective actions to the power system operator. The Fault Diagnoser
is composed of three submodules; the Diagnosis Module, the Explanation Module,
and the Recommendation Module.

The Diagnosis Module tries to find out the cause of a fault and its consequences.

The Explanation Module provides explanation about the fault. It also answers

the operator questions about the fault.

The Recommendation Module recommends the operator for the necessary cor-
rective actions. The corrective actions are listed in the order of required action

sequence.

(4) Knowledge Base (KB)

Required knowledge for performing the fault monitoring and diagnosis are or-
ganized and stored in appropriate forms in the KB for ease of manipulation and
fast access by other major modules. The KB is composed of four submodules; the
Operational & Fault KB, the Load & Load Schedule KB, the System Component
KB, and the Statistic KB.

14



The operational KB includes the current operating status of the major system
components including the sensor values. It also includes the normal expected behav-
iors of the power system components and the anticipated values from the sensors.
The fault KB includes power system behavior during the faults, cascading effect of
the faults and the associated sensor values, and the procedural knowledge required

to filtering out the faulty components.

The load KB includes the information such as load size, and load characteristics.
A load can be continuous, intermittent, or random. It also can be a pure resistive
load of an inductive load requiring large start up inrush current. The load schedule
KB includes the information about the load schedule enabling the AMPERES to

have an anticipation on the scheduled change in power system operational status.

The System Component KB includes the information about the system com-
ponents. The information about the system topology, both design and operational,
is embedded in the representation of each component as a physical environment.
Each component representation also includes the information about various logically

or functionally related components to facilitate the fault monitoring and diagnosis
task.

The Statistic KB includes the information about the fault statistics. It is used
for the AMPERES in learning about the fault behavior and frequencies, and in
updating the heuristic knowledge.

(5) Interface Handler

The Interface Handler is in charge of processing various I/O and is composed
of four submodules; the Input Handler, the Output Handler, the Graphics Proces-
sor, and the Natural Language Interface. The function of these modules are self

explanatory.
2.2 Data Acquisition System Design

Upon initialization of the AMPERES, the process running the main program
forks off two processes, i.e., the data acquisition process and the user interface pro-

cess. Then the three processes initialize their internal variables and necessary data

15



structures and run concurrently. Interprocess communication is managed through

shared memory.

Sensor data is categorized as critical or non-critical data in AMPERES. The
critical data set contains 58 analog values and 42 digital values and collected every
10 ~ 100 milliseconds. The non-critical data set contains 212 analog values and
is collected every second. The collected critical and non-critical data are stored in

separate circular buffers.

The data acquisition process creates three circular buffers, two for critical data
sets and one for non-critical data sets, in shared memory locations. The buffers
are utilized to store data from the sensors and supply them to the inference engine
and the display software. The buffers of each critical and non-critical data set are

referred to as the primary buffer and the secondary buffer, respectively.

Upon initialization, the data acquisition process starts filling up the primary
buffers. Global pointers are maintained by the data acquisition process to make
known to the fault monitoring and diagnosis process and the user interface process
the latest available data. Each time a new data set is written to the buffers, global
pointers are also updated to point to the latest data set [Fig. 5]. The fault monitor-
ing and diagnosis process accesses the latest data and performs the assessment of
the power system state. If the fault monitoring and diagnosis process finds out any
indication of an abnormality in the system’s operational state, it informs the data
acquisition process of the fact such that the data acquisition process can perform

the buffer switching operation.

A system status flag is also created in the shared memory location by the fault
monitoring and diagnosis process to facilitate the buffer switching operation. The
status flag has 4 state values [Fig. 6]. Initially, state 1 is set by the data acquisition
process when it starts filling the data buffers. Then the data acquisition process
checks this status flag each time before it fills the buffer with the collected data
set. If the status flag value is 1, then the data acquisition process continuously
fills the primary buffers. If the fault monitoring and diagnosis process detects any

abnormality in the power system’s operational state, it sets the status flag value

16
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as 2. Upon noticing the flag value set to 2, the data acquisition process fills the
primary buffers for about 1 more second, sets the status flag value as 3, and jumps to
the secondary buffers, leaving the primary buffers intact until the diagnosis for the
abnormality is completed by the fault monitoring and diagnosis process. Since the
buffers, including the data showing the abnormality remains unchanged and the post
fault data is also available, the fault monitoring process has freedom of accessing
arbitrary pre and post fault data necessary for diagnosis. Upon completion of the
diagnosis with the current data, the fault monitoring and diagnosis process resumes
its normal operational state assessment task and will begin accessing the latest data
in the secondary buffers marked by the global pointers. Again, if any abnormality
is found, the status flag is set to 4 by the fault monitoring and diagnosis process.
Upon detecting state 4, the data acquisition process fills in the secondary buffers for

another second, resets the status flag as 1, and jumps back to the primary buffer.
2.3 Fault Injection and Operational Data Simulation

A Fault Injection and Load Simulation Device (FILSD) has been designed and
assembled, which will be used in injecting various types of faults safely into the
actual AMPS test facility installed at NASA/MSFC to obtain actual fault data
[Fig. 3]. It will also be used in generating reduced scale operational and fault data
using small size loads for extensive fault testing required to tune the AMPERES to

the actual operating environment.

A data simulation program is written in C and is running on the PC to generate
simulated operational data and transfer the data to the host computer through the
Ethernet. Various faults and disturbances, such as overload, ground fault, battery
cell open, solar array system failure, load connect and disconnect, etc., can be
generated using the data simulation program incorporated with the FILSD. Any
one of the ten AMPS’ loads can be replaced with the actual load connected to the
FILSD interactively and the actual current and the voltage measurements are sent
to the Sun 386i for the replaced load. The orbital day and night period can also be
set and the simulated operational data changes accordingly whenever day to night

or night to day transition occurs.

19



2.4 Sensor Value Validation

In a fault monitoring and diagnosis process for a physical system whose oper-
ating state is monitored by numerous remote sensors, like AMPS test facility, one
of the crucial steps involved is to validate the incoming sensor values. Trying to
assess the system operating state based on false sensor values is not only futile but
also is often detrimental to the monitored system and is normally accompanied with
significant economical losses if any control action is taken based on such false sensor
values. Yet in reality there are high chances that a sensor may give a false value,
which can be either temporary or permanent. Research is currently being performed
to lay a ground work for the sensor value validation procedure upon which the val-
idation procedure for a specific system can be built systematically in corporation

with the system’s fault monitoring and diagnosis knowledge based system.

The method utilizes the “Functional Environment” (FE) of the sensors, which is
the set of causal relations existing among sensors. For example, from the simplified

one-line diagram of the AMPS [Fig. 1, 7], the FE of the feeder ammeter “AF1” can

be formulated as follows:

R,: AF1=(K1A)(AL1)+ (K2A)(AL2)+ (K3A)(AL3) + (K4A)(AL4)
+ (K5A)(AL5) + (K6B)(ALS6) + (K104)(AL10)
R,: AM = AF1+4 AF2 + AF3

where
R,, Ry = Causal Relations

KiA = Magnetic switch position
0 = open
1 = close
1=1,2,3,4,5,6,10
AF1, ALi = Ammeter values
1=1,2,3,4,5,6,10

20
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Then “Unit Functional Environments” (UFE’s) for ammeter AF1 can be for-

mulated as a tuple such as
e; = ({AF1,AL1,AL2, AL3,AL4,AL5, AL6, AL10}, R,)
es = ({AM,AF1,AF2,AF3}, Ry)

Finally the FE of the AF1, £;, becomes

& = {e1, ez}

The AF1 value can be validated if one of the relations R; of €; € £; is consistent.

If none of the R; is consistent AF1 value is invalidate.

Above validation procedure is based on the assumption that no two sensors in
a FE of a sensor can have errors exactly in the same data scanning interval. This

assumption is made based on the following facts:

i. The data scanning interval, i.e., the time between the two consecutive data
scans, is short, about 10 ~ 100 ms in AMPERES.
ii. The probability of two independent events occurring at the same time in
the continuous distribution is zero.
iii. The number of sensors in a FE of a sensor is small, normally are less than

ten.

Above assumptions may be released for a specific sensor if there exists a good
chance that two sensors in the same FE of that specific sensor may fail exactly
at the same data scanning interval. Some of the sensors may have only one UFE,
subsequently having only one R;, in its FE. In such case, if the only R; is not
consistent, the validation procedure may be applied to each sensor member in the
UFE recursively to check if all other sensor values in the UFE can be validated.

Detailed validation procedure will appear in future publications.
2.5 Knowledge Representation

As mentioned earlier, each component in the AMPS is represented as an object

in AMPERES using the structure definition in the Common Lisp. The example of
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an ammeter representation is shown in Fig. 8. The information included in each

component representation can be categorized in the following three groups:

1.

1.

iil.

The information about the component itself.

The information about the component itself are normally the design data,
the expected operational value, the present operational value, graphics
information for display, etc.

For example, from Fig. 8, component-id, one-of, present-expected-range,
normal-expected-range, present-value, trend, faulty-state, and graphics are
the slots representing the information about an ammeter.

The Functional Environment of the component.

The functional or logical environment of a component includes the infor-
mation about those components which are functionally or logically related
to the current component. This information is essential in collecting the
supporting evidences and checking the cascading effects of a fault.

From Fig. 8 assoc-cb, i.e. functionally associated circuit breaker, assoc-
ms, connect-load, parent-ammeter, children-ammeter, assoc-voltmeter are
the slots related to the functional environment of an ammeter.

The Physical Environment of the component

The physical environment includes the information about those compo-
nents which are physically connected or attached to the current compo-
nent. This information is necessary in identifying the extension of a faulty
location and for graphical display of the system. From Fig. 8, connect-

terminal and location slots are examples of such information.

Fault monitoring and diagnosis knowledge is implemented in production rule

forms. Fig. 9 shows an example of a battery system failure rules. Rule languages

are defined to write a rule close to natural language form as possible. For simplicity

in the rule expression, “If clauses” are implicitly “AND ed.” A rule can refer to any

other knowledge, which is represented as a group of rules.

2.6 Fault Monitoring and Diagnosis Scheme Development

The fault monitoring process starts from checking the circular data buffers
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whether new data is available since the last access to the buffers. This is done
by comparing the present buffer location pointers, which are updated by the data
acquisition process each time new data is obtained, with the previous buffer pointers.
If 2 new data is available, the data is read in from the buffer and the appropriate

slot values of each sensor frame is updated.

Then the expected operating state or the reference operating state is gener-
ated from the current operational context and from the system design information.
The expected operating state is generated such that it can minimize the number
of sensors deviating from their expected ranges as possible in case of faults or dis-
turbances. For example, if a load is connected to a feeder and the corresponding
switches are closed, then there should be certain load voltage range expected from
the system design, and the expected load current can be computed from that ex-
pected voltage range and the load size. If suddenly the load current goes to zero
because of no load voltage, the load current will be out of the normal expected
range. But from the present operational context, the load current is naturally ex-
pected to be zero since there is no load voltage, and consequently the load current

value of zero is considered to be within the normal range.

For the load voltage, if it goes to zero because of the no system voltage, then
the load voltage of zero is also considered to be within its normal range. The only
sensor value out of the expected range in this case is the main voltmeter value whose

expected ranges are designed system nominal voltages.

The above approach significantly reduces the burden of the fault diagnosis
process by enabling the fault diagnosis process to concentrate on examining the

sensor values directly responsible for the faults.

Once an abnormality is found, the fault monitoring process creates an abnor-
mality list and passes the list to the fault diagnosis process. The abnormality list
is a list of pairs, i.e. an association list, and each pair include the sensor name
showing abnormality and the sensor kind it belongs to. For example, ((Voltmeter
VM) (Ammeter AL1) . . .) is an abnormality list showing that the present values of
the voltmeter VM and the Ammeter AL1 exceed their expected ranges respectively.
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Upon receiving an abnormality list, the fault diagnosis process picks up one
pair each time from the list and examines the situation by invoking the appropriate
rule groups. Rules are grouped such that each rule group is specialized in resolving
a specific situation or a fault. The first rule group which is called every time a
pair from the abnormality is picked up is the major sensor rule group, such as
voltmeter rules, ammeter-rules, ckt-breaker-rules, etc. These rule group include
rules which exhaustively categorize the present sensor values or value trends and

invoke appropriate rule groups in sequence to check all the possibilities.

Whenever each rule group is invoked, a context is set around a sensor which
1s going to be the center of the universe in examining its logically related sensor

values. This context switching enables the rule expression to be simple and natural.

Once a fault is found, a fault object is created, which includes the information
related to the faults. Before the fault diagnosis process picks up the next pair in
the abnormality list it deletes those pairs who are included in the abnormality list
because of the cascading effects of the present fault found. The fault monitoring
process repeats the above process until all the pairs in the abnormality are checked.
When the diagnosed fault with the present pair is same with one of the faults found

with the previous pairs, the result is ignored.

Finally all the faults found are passed to the interface process for display and

the control is passed to the fault monitoring process to assess the system operating

state with new data again.
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3. Experimental Set-up

In order to facilitate load simulation and to create a similar data acquisition
environment with the AMPS test facility at the UTSI, an IBM PC compatible
computer was interfaced to the FILSD, outfitted with an Ethernet interface and
connected to the Sun 386i system [Fig. 10]. The FILSD can be used in two mddes,
the Fault Injection Mode and the Load Simulation Mode. Two circuit breakers,
30A and 100A ratings respectively, are provided to test fault currents at different
magnitudes and to provide adequate protection during the fault injection period.
The line voltage is measured and conditioned to interface to the PC analog input
hardware via a voltage divider on the signal conditioning board. Line current is
detected by a 200 AMP/50mv shunt and amplified by the signal conditioning board
to the proper level of the PC analog input hardware [Fig. 11, 12]. Control logic
allows for manual or computer controlled load connection. Selecting manual begins
a time delay (adjustable for .3 to 3 seconds) and signals the PC to start data
acquisition. Upon timeout of the time delay relay, the associated contactor connects
the load. Selecting computer control allows the computer to connect or disconnect

the loads under software control.

The PC collects data from the FILSD much the same way the AMPS does. Raw

data is converted to engineering unit data and buffered in the PC and transferred
to the Sun 386i.
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4. Tasks Completed in Phase I
The following are the list of tasks completed in Phase I.
(1) Hardware selection and installation

i. Sun 386i was selected as main computer. Sun 3861 was selected because of the
following reasons:

a. Portability
It is a small size personal computer and easily portable.

b. Speed
It has a reasonably fast computational speed as a PC (5 MIPS).

c. Multi-tasking capability
It runs UNIX operating system enabling multi-tasking which is one of the
major requirements in a real-time knowledge-based system.

d. User interface
It provides convenient program development environment and enables the
development of a friendly user interface through the window tool kits.
Sun 3864 is configured with 8 Mb of main memory, 3.5” 1.2 Mb floppy disk
drive, 327 Mb of hard disk drive and 16”, 1152 x 900 pixels color monitor.

Currently operating system takes 4 Mb of main memory and Sun Common
Lisp takes another 4 Mb, and thrashing with swap space is frequently
encountered. The main memory will be expanded to 12 Mb.
i1. Northgate 286 PC has been installed for load and fault simulation at the UTSL
The detailed purpose of this PC is as follows:

a. Generation of the simulated operational data
Running a data simulation program, it generates the operational data
based on various fault scenarios.

b. Data acquisition from the Fault Injection & Load Simulation Device (FILSD)
Actual current and voltage measurements are collected from the FILSD
through the data acquisition board. The actual data thus collected can
replace any one of the 10 simulated load data by the load simulation pro-

gram.
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c. Operational data transfer to the host computer through the Ethernet
The operational data, either generated by the simulation program or col-
lected from the FILSD, is transferred to the host computer, Sun 3861,
through the Ethernet.

d. Control of the FILSD
Load connection to the FILSD in load simulation mode or Fault injection
into the AMPS with the FILSD in fault injection mode can be carried out
by the PC either interactively or under program control.

iii. Ethernet controller board, cables and necessary software on PC side were ac-
quired and installed. Both loads and faults can be simulated using the FILSD
and the data simulation program running on the Northgate PC and the simu-
lated sensor data can be transferred to the sun 386i through the Ethernet for
processing by the AMPERES.

(2) Software selection and installation

Originally IBUKI Lisp was selected and installed, since it was the only avail-
able lisp language on the Sun 386i as of Oct., 1988. The language was written in
C, small in size but the language support was marginal. Sun Common Lisp was
released to the UTSI for test in April, 1989. The test revealed that the Sun Com-
mon Lisp possesses various convenient features which are quite essential for real
time knowledge-based system development, such as process forking off capability
inside the lisp and sharing the same address space between the parent and the child
process, process scheduling capability inside the lisp, and good documentation and
language support, etc. Therefore the development language has been replaced from
the IBUKI Lisp to the Sun Common Lisp. The speed of the Sun Common Lisp has
not been confirmed yet because of the insufficient memory on Sun 3861, which will
be expanded to 12 Mb in Phase II.

(3) Fault Injection & Load Simulation Device (FILSD) design and manufacturing

The FILSD was designed and assembled for load simulation and safe fault

injection. Details of this device was explained in Section 2.3.

(4) Data acquisition system design and implementation
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The data acquisition program written in C collects the data through the Eth-
ernet and put them in circular buffers in a shared memory location such that AM-
PERES’ fault monitoring and diagnosis process can access them. Details of the

data acquisition system design and implementation was described in Section 2.2.
(5) Sensor value validation scheme development

One of the most crucial processes in real time fault monitoring and diagnosis is
to validate various remote sensor values before using those values in any reasoning
process. Trying to assess the system state based on the false sensor values is not only
futile but may even be detrimental to the AMPS if any control action is taken based
on the decision deduced from such false sensor values. A systematic sensor value
validation procedure based on the logical environments and the casual relations
of the sensors has been developed. Details of the sensor validation scheme was

explained in Section 2.4.
(6) Representation scheme development for system components and configuration

System components are represented using the “structure” facility in Common
Lisp. The system configuration information is embedded in the slot values of all

the components such as “connect terminal.” Details are explained in Section 2.5.
(7) Procedural knowledge representation scheme development

Procedural knowledge is represented with rule base. To reduce the total number
of rules and to facilitate maintaining the consistency and integrity of the rule base,
rules are expressed as generic as possible. Various rule languages are defined to
express the rules close to the natural language. About 50 rules are defined in Phase

1. Details are explained in Section 2.5.
(8) Main control and inference scheme development

Rules are grouped by their objectives to search efficiently and to facilitate
maintaining consistency. Before invoking each rule group, the context is set for
the execution of that specific rule group to simplify the rule syntax and to use an

expression closer to natural language. Diagnosis procedure can be initiated from
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any sensor measurement value showing the indication of the abnormality. It then
examines the fault possibilities by looking at other sensor values with expectations.
Once a diagnosis is made, further probe of the faults on different abstraction level

can be pursued if necessary. Details are described in Section 2.6.
(9) System operational status and diagnosis result display

System operational status is displayed on the screen using windows. Four win-
dows are used for display and operator input; the System Operating Status Window,
the Major Operational Parameter Window, the Operator Interface Window, and
the Fault Record Window.

The System Operating Status Window shows the one line diagram of the system
and the current positions of all the circuit breakers and the magnetic switches. It
also displays the major meter readings such as load currents, feeder currents, main
current, main voltage, battery voltage, etc. If there exists any indication of an
abnormality, sensors detecting that abnormality change the color to signify the

findings.

The Major Operational Parameter Window displays major operational infor-
mation of the power system and the AMPERES such as present time, main system
voltage, main system current, present data buffer locations, orbital day or night,

and overall system present operating state.

The Operator Interface Window displays the explanation about the current
operating state and the results of the fault diagnosis. It also waits for the operator

input.

The Fault Record Window displays the brief information for the past several
faults. The operator can request detailed information about a specific fault by

typing in the fault index number on the Operator Interface Window.
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5. Project Schedule and Tasks Planned in Phase 11

Overall project schedule is shown in Appendix i. Most of the Phase I work
has been completed as of September 30, 1989. Demonstration of the prototype
developed in Phase I will be scheduled with NASA/MSFC and Auburn Space Power

Institute respectively.

In Phase II, operational real-time fault monitoring and diagnosis knowledge-

based system integrated with the NASA test facility will be completed.
Details of the tasks planned in Phase II are as follows:

(1) Battery short term and long term performance observation scheme design and
implementation
i. Observation of the charge/discharge characteristics
ii. Early warning for the battery life
(2) Solar array system performance observation scheme design and implementation
1. Observation of the I-V characteristics
ii. Observation of the Solar array output in relation with orbital locations
(3) Operational data and fault data acquisition from the NASA test facility as the
data becomes available and the operation of the AMPERES in real time
1. Application of the fault using the Fault Injection Device.
ii. Completion of data acquisition system including the installation of the
standard communication protocols.
iil. Investigation of the system noise originated from switching surge, power
source transition, etc.
(4) Development of effective methods for monitoring dynamic loads
1. Handling of motor loads and the start-up inrush currents
1. Handling of intermittent loads
ii. Handling of random loads
(5) Power System reliability analysis
i. Collection of fault statistics
ii. Computation of LOLP (Loss of Load Probability)

(6) Sensor value validation scheme development and reliability analysis
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i. Sensor value validation scheme using causal relations among sensors.

ii. Weibull and Weibayes analysis as sensor operational data accumulates.
(7) Enhancement of the fault diagnosis capability by observing the short term

trends of the sensor values
i. Implementation of the rule language “Observe”
ii. Association of the timer interrupt functions with the process created by
the “Observer” function

(8) Friendly user interface development

i. Detailed information display window (including orbital time)

ii. Display of faulty or live lines and components
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6. Summary and Conclusion to Date

Many of the tasks involved in developing a real-time fault monitoring and
diagnosis KBS, such as data structure for data acquisition, sensor value validation,
reference operating state generation, effective inference scheme for fault diagnosis,
etc., are still in research stages. Consequently carrying out this project requires both
the research work and the implementation of the research results. Yet many of the
concepts or approaches taken in this project should be refined and implementation

details be elaborated.

The component centered approach is natural and effective since it follows the
way how an experienced operator normally performs diagnosis. Necessary Meta
knowledge should be formulated to decide whether the current diagnostic results
offer sufficient information to the operator in proper abstraction level and to decide

whether probing another abstraction level is necessary.

Sensor value validation procedure is required to develop a robust fault monitor-
ing and diagnosis KBS working under the anticipated noises and disturbance caused
by switching surges, and inductive load starts, etc. Short term, mid term and long
term data observation is necessary for trend analysis and statistical analysis, which

is essential for battery system diagnosis and will enhance the accuracy of the overall

diagnosis results.

In Phase II, emphasis will be put on the completion of the research work initi-
ated in Phase I and on the incorporation of the research results into the AMPERES
to develop a practical real time KBS.
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8. Appendix

(1) Project Schedule

Attached

(2) Publications

1.

1.

1ii.

iv.

S.C. Lee, Louis F. Lollar, “Development of a Component Centered Fault
Monitoring & Diagnosis Knowledge Based System for Space Power Sys-
tem,” Proceedings of the IECEC-88, Denver, Colorado, Vol. 3, pp. 377-
388, July 31 - Aug. 5, 1988.

L.D. Wilhite, S.C. Lee, L.F. Lollar, “Data Acquisition for a Real Time
Fault Monitoring & Diagnosis Knowledge-Bases System for Space Power
System,” Proceedings of the IECEC-89, pp 117-121, Washington D.C.,
Aug. 6-11, 1989.

S.C. Lee, C. Patterson, M.W. Ratliff, F.W. Roepke, L.D. Wilhite, L.F.
Lollar, “Real-time Fault Monitoring & Diagnosis Knowledge-based System
for Space Power Systems: AMPERES,” will be published soon.

S.C. Lee, “Sensor Value Validation Based on Causal Relations,” will be
published soon.
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